Документ подписан простой электронной подписью

информация Опеночные материалы для промежуточной аттестации по дисциплине

Должность: ректор

Дата подписания: 30.10.2025 10:48:38 Электротехника и электроника Уникальный программный ключ:

e3a68f36

| F۲۵ | <u> </u>         |                                             |  |  |  |  |  |  |
|-----|------------------|---------------------------------------------|--|--|--|--|--|--|
|     | Код, направление | 13.03.02 Электроэнергетика и электротехника |  |  |  |  |  |  |
|     | подготовки       |                                             |  |  |  |  |  |  |
|     | подготовки       |                                             |  |  |  |  |  |  |
|     | Направленность   | Электроэнергетика и электротехника          |  |  |  |  |  |  |
|     | (профиль)        |                                             |  |  |  |  |  |  |
|     | Форма обучения   | Очная                                       |  |  |  |  |  |  |
|     | Кафедра-         | Радиоэлектроники и электроэнергетики        |  |  |  |  |  |  |
|     | разработчик      |                                             |  |  |  |  |  |  |
|     | Выпускающая      | Радиоэлектроники и электроэнергетики        |  |  |  |  |  |  |
|     | кафедра          |                                             |  |  |  |  |  |  |

## Типовые задания для контрольной работы (2 семестр): Задача 1. Расчет разветвленной цепи постоянного тока

Для электрической цепи, соответствующей номеру варианта, выполнить следующее:

- 1. Написать уравнения по законам Кирхгофа (решать полученную систему не требуется).
  - 2. Выполнить расчет токов во всех ветвях методом контурных токов.
  - 3. Составить и проверить баланс мощностей.
  - 4. Построить потенциальную диаграмму для внешнего контура.
- 5. Определить ток в одной из ветвей (по своему выбору) по методу эквивалентного генератора. Определение токов в цепи после размыкания выбранной ветви выполнить методом узловых потенциалов.

Исходные данные приведены в табл. 1, схемы показаны на рис. 1. ЭДС источников даны в Вольтах, сопротивления – в Омах.

## Исходные данные

| Таблица | 1 |
|---------|---|
|         |   |

| №<br>ctrokh | $E_1$ | $E_2$ | $E_3$ | $E_4$ | $E_5$ | <i>E</i> <sub>6</sub> | $R_1$ | $R_2$ | $R_3$ | $R_4$ | $R_5$ | $R_6$ |
|-------------|-------|-------|-------|-------|-------|-----------------------|-------|-------|-------|-------|-------|-------|
| 1           | 40    | 20    | 70    | 50    | 60    | 30                    | 5     | 8     | 15    | 4     | 6     | 9     |
| 2           | 20    | 20    | 60    | 60    | 75    | 40                    | 80    | 90    | 6     | 12    | 8     | 15    |
| 3           | 90    | 100   | 30    | 75    | 50    | 120                   | 15    | 12    | 6     | 8     | 10    | 14    |
| 4           | 60    | 50    | 70    | 80    | 100   | 40                    | 25    | 10    | 12    | 6     | 20    | 8     |

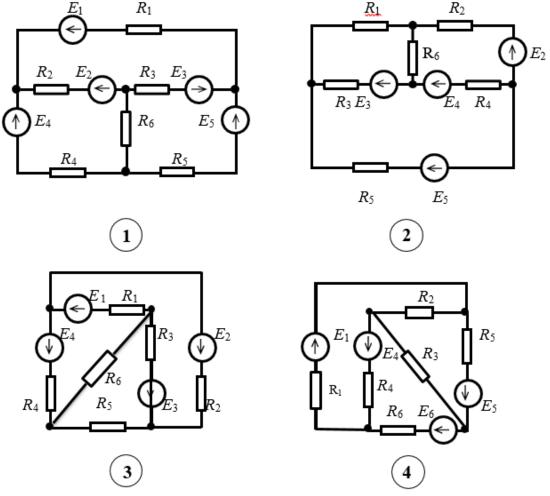



Рис. 1. Схемы к задаче 1

Задача 2. Расчет линейной электрической цепи однофазного синусоидального тока символическим методом

Заданы параметры цепи и напряжение на входе цепи  $u=U_{\rm m}\sin(\omega\ t+\varphi)$ . Требуется:

- 1. Определить токи и напряжения на всех участках цепи символическим способом.
- 2. Записать выражения для мгновенных значений всех токов и напряжений.
- 3. Составить и рассчитать баланс активных и реактивных мощностей.
- 4. Построить векторную диаграмму токов и напряжений. Числовые данные приведены в табл. 2, схемы показаны на рис. 2.

Исходные данные

Таблица 2

| №      | $R_1$ | $L_1$ | $C_1$ | $R_2$          | $L_2$ | $C_2$ | $R_3$ | $L_3$ | $C_3$ | $U_{\mathrm{m}}$ | $\psi_u$ | f  |
|--------|-------|-------|-------|----------------|-------|-------|-------|-------|-------|------------------|----------|----|
| строки | QM    | МГн   | ₩Ф    | Q <sub>M</sub> | мГн   | ₩Ф    | Qм    | мГн   | мкФ   | В                | рад      | ŗï |
| 2      | 12    | 70    | 500   | 18             | 30    | 125   | 10    | 50    | 450   | 250 v2           | π/6      | 50 |
| 3      | 15    | 25    | 125   | 12             | 80    | 500   | 8     | 10    | 200   | 50 1/2           | $\pi/4$  | 50 |
| 4      | 10    | 60    | 600   | 16             | 15    | 150   | 12    | 75    | 400   | 300 v2           | π/3      | 50 |

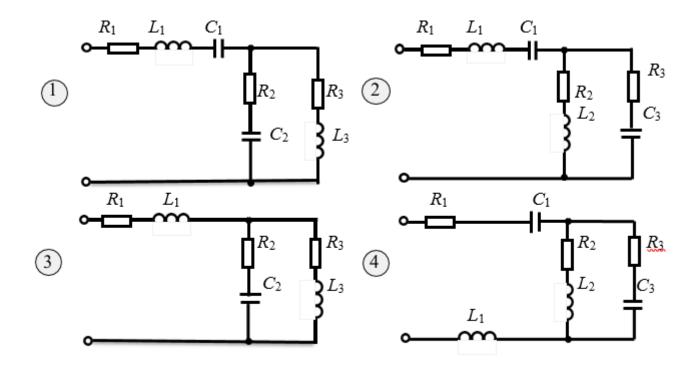
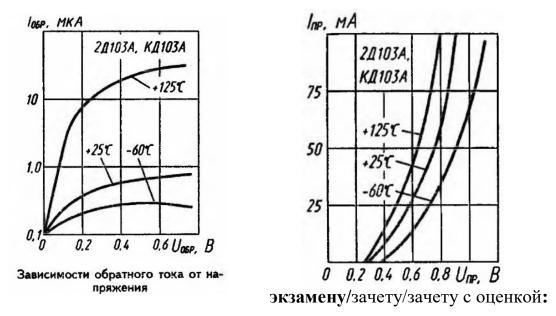
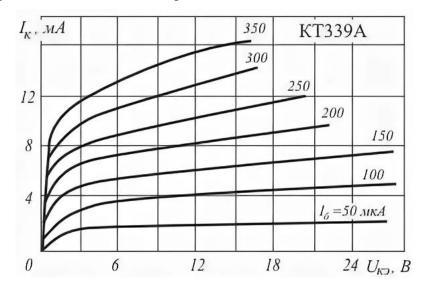




Рис.2. Схемы к задаче 2


## Задача 3. Электроника

- 1. По вольт-амперной характеристике кремниевого выпрямительного диода КД103A при температуре 20 °C определить:
- а) сопротивление постоянному току при прямом включении для напряжений  $U_{np} = 0.4$ ; 0,6; 0,8 В. Построить график зависимости  $R_0 = f(U_{np})$ ;
- б) сопротивление постоянному току при обратном включении для напряжений  $U_{o\delta p} = -50; -100; -200$  В. Построить график зависимости  $R_0 = f(U_{o\delta p});$ 
  - в) дифференциальное сопротивление для напряжений  $U_{np} = 0.8 \text{ B}$  и  $U_{o\delta p} = -50 \text{ B}$ ;
  - г) кругизну ВАХ для напряжений  $U_{np} = 0.8 \text{ B}$  и  $U_{o\delta p} = -50 \text{ B}$ .



2. Для транзистора КТ312A статический коэффициент усиления тока базы  $\beta = 10$  - 100. Определить, в каких пределах находится коэффициент передачи тока эмиттера  $\alpha$ .

3. По семейству выходных характеристик транзистора КТ339A в схеме с общим эмиттером определить ток базы  $I_E$  и напряжение на коллекторе  $U_K$  в рабочей точке A, в которой ток коллектора  $I_K$  = 6 мA, а мощность, рассеиваемая на коллекторе  $P_K$  = 72 мВт.



## Типовые вопросы к экзамену 2 семестр

- 1. Понятия электрических цепей (ток, электрическая цепь, напряжение, электрический потенциал, мощность, энергия). Линейные пассивные и активные элементы (элементы цепи, источники, приемники). Условие эквивалентности источника ЭДС и источника тока.
- 2. Электрическая цепь и ее структурные, принципиальные и эквивалентные схемы. Схемы замещения. Основные понятия топологии схем: узел, ветвь, контур. Идеализированные элементы электрических цепей (резистивный, индуктивный, емкостной).
- 3. Закон Ома для участка цепи (сила тока, согласованное и встречное включение), обобщенный закон Ома. 1 и 2 законы Кирхгофа. Потенциальная диаграмма
- 4. Расчет цепей методом обобщенного закона Ома. Расчет цепей методом уравнений Кирхгофа.
- 5. Расчет цепей методом наложения, методом контурных токов и методом узловых потенциалов
- 6. Параметры гармонических функций. Мгновенное значение, амплитуда, фаза, частота, угловая частота, начальная фаза. Действующее значение, среднее и средневыпрямленное значение и коэффициент формы.
- 7. Гармонические колебания в пассивных элементах электрических цепей (R, L,C).
- 8. Мощность в цепи гармонического тока: мгновенная, активная, реактивная, полная, комплексная. Баланс мощностей
- 9. Законы электрических цепей для комплексных действующих значений. Изображение комплексных напряжений на плоскости. Метод комплексных

- амплитуд. Законы Ома и Кирхгофа в комплексной форме. Топографическая диаграмма напряжений.
- 10. Анализ простых линейных цепей при гармоническом воздействии (RC, RL). Треугольник сопротивлений. Векторные диаграммы напряжений и токов
- 11. Анализ простых линейных цепей при гармоническом воздействии (последовательная RLC). Понятие резонанса напряжений.
- 12. Анализ простых линейных цепей при гармоническом воздействии (параллельная RLC). Понятие резонанса токов.
- 13. Способы повышения коэффициента мощности. Согласование источника энергии с нагрузкой.
- 14. Электрические цепи с магнитными связями (связанные катушки, взаимоиндукция, поток рассеяния, поток самоиндукции, полный поток, согласное и встречное включение, коэффициент связи).
- 15. Расчет разветвленной цепи при наличии взаимной индуктивности. Эквивалентная замена индуктивных связей
- 16. Воздушный трансформатор. Уравнения. Схема замещения. Баланс мощности в цепях с индуктивно связанными контурами
- 17. Понятие трехфазных цепей. Получение трехфазной ЭДС. Уравновешенность, симметричность
- 18. Виды соединений трехфазных цепей. Соединение звездой. Основные соотношения и диаграммы
- 19. Виды соединений трехфазных цепей. Соединение треугольник. Основные соотношения и диаграммы.
- 20. Расчет симметричных режимов работы трехфазных цепей. Мощность в трехфазных цепях
- 21. Расчет несимметричных режимов работы трехфазных цепей. Напряжение смещения нейтрали.
- 22. Применение векторных диаграмм для анализа несимметричных режимов (аварийные режимы при соединении звезда)
- 23. Применение векторных диаграмм для анализа несимметричных режимов (аварийные режимы при соединении треугольник)
- 24.11. Электронно дырочный (p-n) переход в состоянии равновесия. Прямое включение p-n перехода. Обратное включение p-n перехода.
- 25.14. ВАХ идеализированного p-n перехода. Электрическая модель p-n перехода. Усредненные параметры p-n перехода (статическое и динамическое сопротивления, крутизна, барьерная и диффузионная ёмкости).
- 26. Пробой при обратном включении p-n перехода (лавинный, туннельный, тепловой).
- 27. Классификация и характеристики полупроводниковых диодов.
- 28. Выпрямительные диоды. Характеристики, параметры, применение.
- 29. Стабилитроны. Характеристики, параметры, применение.
- 30. Варикапы. Характеристики, параметры, применение.
- 31. Импульсные диоды. Характеристики, параметры, применение.

- 32.Составляющие токов электродов биполярного транзистора (БТ), коэффициенты передачи тока.
- 33. Статическая модель БТ Эберса Молла.
- 34.Схемы включения БТ с общей базой (ОБ).
- 35.Схемы включения БТ с общим эмиттером (ОЭ).
- 36. хемы включения БТ с общим коллектором (ОК).
- 37. Режимы работы БТ.
- 38.Система дифференциальных h параметров БТ в различных схемах включения.
- 39. Частотные свойства БТ, характеристические частоты, эквивалентные схемы в режиме малого сигнала.
- 40. Принцип действия, ВАХ, виды, основные параметры, и применение тиристоров.
- 41. Принцип действия и параметры полевых транзисторов (ПТ) с управляющим p–n переходом.
- 42.ВАХ ПТ с управляющим p-n переходом.
- 43. Фоторезисторы и фотодиоды. Характеристики, параметры, применение.
- 44. Фототранзисторы. Характеристики, параметры, применение.
- 45. Оптроны (резисторные, диодные, транзисторные, тиристорные).