Документ подписан простой алектронной подписью диагностического тестирования по дисциплине Информация о владельце:

ФИО: Косенок Сергей Михайлович

Должность: ректор

Дата подписания: 20.06.2025 07:41:31

Уникальный программный ключ: e3a68f3eaa1e62674054f4998099d3d60fdcf856 анализа данных и временных рядов, 6 семестр

Код, направление подготовки	09.03.01 Информатика и вычислительная техника		
Направленность (профиль)	Искусственный интеллект и экспертные системы		
Форма обучения	Очная		
Кафедра разработчик	Автоматизированных систем обработки информации и управления		
Выпускающая кафедра	Автоматизированных систем обработки информации и управления		

№	Провер яемая компете нция	Задание	Варианты ответов	Тип сложности вопроса
1	ПК-2.3	Математическая зависимость двух переменных, которые связаны вследствие совпадения или из-за наличия определенного третьего, скрытого фактора		Низкий
2	ПК- 2.2 ПК-2.3	Использовать традиционные статистические модели анализа временных рядов можно, если ряд является	 Стохастическим Стационарным Нестационарным Периодическим 	Низкий
3	ПК- 1.2 ПК-1.3 ПК-2.1 ПК- 2.2	Метод, который можно использовать для определения зависимости между двумя непрерывными переменными	1. Линейная регрессия 2. DBSCAN 3. Корреляционный анализ 4. Метод k-ближайших соседей	Низкий
4	ПК-2.1 ПК- 2.2	Тип графика, используемый для визуализации распределения значений признака	1. Линейный график 2. Столбчатая диаграмма 3. Гистограмма 4. Круговая диаграмма	Низкий

5		Метод, используемый для кластеризации данных	1. К-средних 2. Линейная регрессия 3. ARIMA 4. Случайный лес	Низкий
6	ПК-1.1 ПК- 1.2 ПК-1.3 ПК-2.1 ПК- 2.2 ПК-2.3	Сопоставьте тип задачи анализа данных с его описанием:	 Классификация ← Поиск скрытых закономерностей и группировка объектов по схожести Регрессия ← Построение функциональной зависимости между зависимой и независимыми переменными Кластеризация ← Разделение объектов на заранее определенные классы 	Средний
7	ПК-1.1 ПК- 1.2 ПК-1.3 ПК-2.1 ПК- 2.2 ПК-2.3	Свёртка применяется в	1. Нейронных сетях 2. Статистическом анализе 3. Обработке сигналов 4. Фильтрах обработки изображений	Средний
8	ПК- 2.2	Как временной ряд можно рассматривать следующие данные	1. Спектрограмму сортов вин 2. Сезонные колебания температуры воздуха 3. Рождаемость с 1950 по 1980 года 4. Сорта ириса в зависимости от длины/ширины лепестков	Средний

	ПК-1.1		1	
9	ПК- 1.2 ПК-1.3 ПК-2.1 ПК- 2.2	Для обработки пропущенных значений ряда можно использовать	1. замена предыдущим значением 2. скользящее среднее 3. экстраполяция 4. интерполяция 5. удаление периодов времени пропущенных данных 6. замена минимально допустимым значением	Средний
10	ПК-1.1 ПК- 1.2 ПК-1.3 ПК-2.1 ПК- 2.2 ПК-2.3	АЧХ - это	1. Амплитудно-частичная хронология 2. Абстрактно-частная характеристика 3. Абстрактно-частотная хронология 4. Амплитудно-частотная характеристика 5. Абстрактно-частотная характеристика 6. Абстрактно-частная хронология	Средний
11	ПК-1.1 ПК- 1.2 ПК-1.3 ПК-2.1 ПК- 2.2 ПК-2.3	Сопоставьте тип временного ряда с его описанием:	 Сезонный временной ряд	Средний

12	ПК-1.1 ПК- 1.2 ПК-1.3 ПК-2.1 ПК- 2.2 ПК-2.3	Приведена формула $X_k = \sum_{n=0}^{N-1} x_n \cdot e^{-i2\pi kn/N}$, где $k=0,\dots,N-1$	 Прямого непрерывного преобразования Фурье Обратного непрерывного преобразования Фурье Прямого дискретного преобразования Фурье Обратного дискретного преобразования Фурье 	Средний
13	ПК-1.3 ПК-2.1 ПК-2.2	Рассчитайте значение медианы для следующей выборки данных: [2, 5, 7, 11, 13, 17, 19].		Средний

14	111(2.3	Для полностью рекуррентной нейронной сети простейшей архитектуры необходимо	1. 1 матрица весов, связывающая х -> у 2. 2 матрицы весов, связывающая: 1) х -> h; 2) h -> у 3. 2 матрицы весов, связывающая: 1) х(t-1) -> х(t); 2) х(t) -> у(t) 4. 3 матрицы весов, связывающая: 1) х(t) -> h(t); 2) h(t-1) -> h(t); 3) h(t) -> y(t)	Средний
15	ПК-2.1	В CNN, реализующей задачу классификации, будут присутствовать слои	1. пуллинга 2. свёртки 3. вупинга 4. полносвязный 5. LSTM 6. CN	Средний
16	ПК- 1.2 ПК-1.3 ПК-2.1 ПК- 2.2	Рассчитайте значение среднеквадратической ошибки (Mean Squared Error, MSE) для прогнозирования на основе следующих фактических и прогнозных значений: Фактические значения: 34, 37, 44, 47, 48, 48, 46, 43, 32, 27, 26, 24. Прогнозные значения: 37, 40, 46, 44, 46, 50, 45, 44, 34, 30, 22, 23. Ответ округлить до одного знака после запятой.		Высокий

17	ПК- 2.2 ПК-2.3	Сопоставьте название рекуррентной сети и задачу, для которой она может применяться	 перевод текста ↔ LSTM распознавание зашумленных цветных изображений ↔ biRNN генерация музыкальных композиций ↔ Сеть Хопфилда распознавание рукописных подписей ↔ Сеть Хемминга 	Высокий
18		Сопоставьте название преобразования последовательности (разложения) и его описание	 разложение функции в бесконечную сумму степенных функций ↔ Фурье разложение функции в бесконечную сумму периодических функций ↔ Тейлор свертка функции определенного вида и изучаемого сигнала ↔ Вейвлет 	Высокий
19	ПК-2.1	Расставьте этапы работы с моделью ARMA в правильном порядке	1. Определение коэффициентов р, q 2. Проверка ряда на стационарность и приведение его к стационарному, при необходимости 3. Прогнозирование	Высокий
20	ПК- 2.2	Расставьте этапы работы с моделью Keras в правильном порядке	1. model.compile() 2. model.evaluate() 3. model.fit() 4. model.predict()	Высокий