Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Косенок Сергей Ми Эйгеночные материалы для промежуточной аттестации по дисциплине

Должность: ректор

Дата подписания: 21.06.2025 16:17:09

Уникальный программный ключ:

Современные проблемы теории управления

e3a68f3eaa1e62674b54f4998099d3d6bfdcf836

Код, направление подготовки	27.04.04 Управление в технических системах
Направленность (профиль)	Управление и информатика в технических системах
Форма обучения	Очная
Кафедра- разработчик	Автоматики и компьютерных систем
Выпускающая кафедра	Автоматики и компьютерных систем

Типовые задания для контрольной работы

Примеры типовых контрольных заданий:

1. Дана система уравнений, описывающая объект регулирования

$$\begin{cases} 2\dot{y}_1 + 10y_1 = 3u_1 + 4\dot{u}_2 \\ \ddot{y}_2 + 7y_2 = u_1 + 4\dot{u}_2 + u_2 \end{cases}$$

Необходимо записать передаточную матрицу системы. Составить структурную схему.

2. Дана система уравнений, описывающая объект регулирования

$$\begin{cases} \dot{y}_1 + 2y_1 = u_1 + 4\dot{u}_2 \\ 0.01\ddot{y}_2 + 0.1\dot{y} + y_2 = u_1 + 2u_2 \end{cases}$$

Необходимо записать модель в пространстве состояний. Составить структурную схему.

3. Дана система уравнений, описывающая САР

$$2\ddot{y} + 0.2\dot{y} + y = 10u + 2\dot{u}.$$

Необходимо записать модель в пространстве состояний. Определить переходную характеристику САР.

- 4. Оценить наблюдаемость САР частоты вращения турбореактивного двигателя.
- 5. Оценить управляемость САР вентиляции.
- 6. Синтезировать фильтр Калмана для САР охлаждения.
- 7. Решить задачу П регуляторов методом модального синтеза.
- 8. Решить задачу LQR-оптимального синтеза CAP частоты вращения турбореактивного двигателя.
- 9. Решить задачу LQG-оптимального синтеза CAP охлаждения.

Типовые вопросы и практические задания к экзамену

1. Терминология теории автоматического управления.

	100peiii iceniiii
2. Принципы построения САУ.	•
3. Методы математического моделирования линейных САУ.	
4. Понятие операторно-структурной схемы. Правила	
преобразования операторно-структурной схемы.	
5. Математический аппарат моделирования нелинейных САУ.	
6. Математический аппарат моделирования дискретных САУ.	
7. Математический аппарат моделирования особых САУ.	
8. Нестационарные объекты управления. Методы моделирования	
9. Временные характеристики объектов управления.	
10. Позиционные динамические звенья	
11. Особые динамические звенья	
12. Объекты с запаздыванием	
13. Синтез регуляторов дискретных.	
14. Синтез робастных систем.	
15. Понятие наблюдаемости, управляемости, достижимости,	
стабилизируемости.	
16. Критерии наблюдаемости и управляемости Калмана.	

теоретический

- 17. Фильтр Винера-Хопфа во временной области
- 18. Фильтр Винера-Хопфа в частотной области.
- 19. Фильтр Калмана. Процедура синтеза Калмана для непрерывных систем.
- 20. Процедура синтеза Калмана для дискретных систем.
- 21. Наблюдатели полного порядка.
- 22. Наблюдатель Люенбергера.
- 1. Составить математическую модель в терминах «вход-выход» линейной системы.
- Записать передаточную функцию замкнутой и разомкнутой системы.
- 3. Составить математическую модель в терминах «входсостояния-выход» линейной системы.
- 4. Составить математическую модель нелинейной системы.
- 5. Составить математическую модель в терминах «вход-выход» линейной дискретной системы.
- 6. Записать передаточную функцию замкнутой и разомкнутой дискретной системы.
- 7. Составить математическую модель в терминах «входсостояния-выход» дискретной линейной системы.
- 8. Оценить устойчивость линейной непрерывной САУ.
- 9. Найти запасы устойчивости САУ.
- 10. Определить управляемость, наблюдаемость линейной САУ.
- 11. Оценить показатели качества САУ.
- 12. Найти статическую ошибку по возмущению.
- 13. Найти функцию чувствительности линейной САУ.
- 14. Определить параметры П-регулятора линейной САР.
- 15. Определить параметры ПИ-регулятора линейной САР.
- 16. Определить параметры ПД-регулятора линейной САР.
- 17. Определить параметры ПИД-регулятора линейной САР.
- 18. Определить параметры корректирующего устройства методом Солодовникова (частотный метод).
- 19. Осуществить синтез LQR-регулятора.
- 20. Осуществить синтез LGQ-регулятора.
- 21. Осуществить синтез наблюдателя Калмана.
- 22. Осуществить синтез наблюдателя Люенбергера.
 - 1. Дана система уравнений, описывающая объект регулирования

$$\begin{cases} 2\dot{y}_1 + 10y_1 = 3u_1 + 4\dot{u}_2 \\ \ddot{y}_2 + 7y_2 = u_1 + 4\dot{u}_2 + u_2 \end{cases}$$

Необходимо записать передаточную матрицу системы. Составить структурную схему.

2. Дана система уравнений, описывающая объект регулирования

$$\begin{cases} \dot{y}_1 + 2y_1 = u_1 + 4\dot{u}_2 \\ 0.01\ddot{y}_2 + 0.1\dot{y} + y_2 = u_1 + 2u_2 \end{cases}$$

Необходимо записать модель в пространстве состояний. Составить структурную схему.

практический

теоретикопрактический 3. Дана система уравнений, описывающая САР $2\ddot{y} + 0.2\dot{y} + y = 10u + 2\dot{u}.$

Необходимо записать модель в пространстве состояний. Определить переходную характеристику САР.

- 4. Оценить наблюдаемость САР частоты вращения турбореактивного двигателя.
- 5. Оценить управляемость САР вентиляции.
- 6. Синтезировать фильтр Калмана для САР охлаждения.
- 7. Осуществить синтез оптимального регулятора САУ в среде Matlab/Simulink