Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Косенок Сергей Михайлович

Должность: ректор Дата подписания: 20.06.2025 07:01:23 для промежуточной аттестации по дисциплине

Уникальный программный ключ:

е3a68f3eaa1e62674b54f49980**Вынислич**ельная физика и компьютерный инжиниринг

Код, направление подготовки	03.04.02 Физика
Направленность (профиль)	Цифровые технологии в геофизике
Форма обучения	очная
Кафедра-разработчик	Кафедра экспериментальной физики
Выпускающая кафедра	Кафедра экспериментальной физики

Типовые варианты заданий для контрольной работы:

Вычислить значение производной в произвольной точке $x=x_0$ аналитически и численно тремя методами для пяти значений приращения аргумента $\Delta x=1$; 0.2; 0.1; 0.01; 0.001. Результаты расчета вывести на экран и распечатать в виде таблицы. Примечание. Значение параметров а, b, c, d, m, n, A, В выбрать самостоятельно.

Вид функции

- (1) $x(t) = Ae^{-at} \sin(\omega t + b)$
- (2) y=ctg^m (ax)
- (3) $x(t) = Ae^{at} \cos(\omega t + b)$
- $(4) y(x) = (e^{ax} e^{-ax})^n$
- $(5) x(t) = t^{at}$
- (6) $yv(t) = cos^2(at+b)$
- $(7) y(x) = (ax)^{\sin(bx)}$
- (8) $yv(t)=\sin^2(at+b)$
- $(9) q(t) = (a-bt^n)^n$
- $(10) y(x) = x^n \cos(ax)$
- $(11) R(\varphi) = \arccos^{m} (a + b\varphi n)$
- $(12) r(\varphi) = c^{\sin(a\varphi + b)}$
- $(13) y(x)=\ln(tg^n(ax+b))$
- (14) $vv(t) = log_a(t^n + b^m)^k$
- $(15) S(\varphi) = B\cos^n(a\varphi + b)$
- $(16) S(\varphi) = A \sin^n(a\varphi + b)$
- $(17) y = tg^{ax}(x/a)$
- $(18) X(t) = \lg(atn+b)$

Решить дифференциальное уравнение аналитически и численно методами Эйлера и Рунге-Кутты второго порядка для двух значений шага интегрирования h=0.01; 0.001. Результаты расчета вывести на экран и распечатать в виде таблицы. Построить графики функций y(x). Значение параметров a, b и начальные условия $y/_x = x_0 = y_0$ выбрать самостоятельно.

Варианты уравнений:

(1) y'=(xy2+x)/(y-x2y)

- $(2) y'=\cos(t)-y$
- (3) y'=(1-2x)/y2
- (4) $y'=\exp(bx)-ay$
- (5) y'=(1-x2)/xy
- (6) $Y'=-2y/(y^2-6x)$
- (7) y'=(y2-y)/x
- (8) y'=1/(2x-y2)
- (9) y'=(1+y)/(tg(x))
- (10) y' = sec(x) y tg(x)
- $(11) y' = \exp(x) 1$
- (12) y' = (exp(x)-y)/x
- (13) $y'=y \ln(y)/\sin(x)$
- (14) y'=1+y/(x(x+1))
- (15) y'=(1+y2)/(1+x2)
- (16) y'=(y+yx2-x2)/(x(1+x2))
- (17) y'=4x-2y
- $(18) y' = \cos(x-y)$
- (19) $y'=x \exp(-x^2)-2xy$
- (20) y'=3x-2y+5
- (21) y'=2x-y
- (22) $y' = \sin(x) y$
- (23) y'=exp(-x)-2y
- $(24) y' = \exp(x) y$
- $(25) y' = \exp(-x) 2x$
- $(26) y'=\exp(2x)-1$

Этап: проведение промежуточной аттестации по дисциплине (экзамен)

этин: проведение промежуто той изтестиции по дисциилите (экза	
Задание для показателя оценивания дескриптора «Знает»	Вид задания
1. Имена переменных Зарезервированные слова в Python. Объекты	теоретический
в языке Python.	
2. Форматирование вывода (текста и чисел). Printf синтаксис.	
Метод форматирования строк (Format string syntax).	
3. Арифметические операторы и порядок выполнения.	
4. Использование стандартных математических функций	
5. Ошибки округления.	
6. Комплексные числа. Комплексная арифметика. Комплексные	
функции в Python.	
7. Символьные вычисления. Основные операции	
дифференцирования и интегрирования.	
8. Решение уравнений и разложение в ряд Тейлора	
9. Логические выражения.	
10. Основные операции со списками.	
11. Цикл for. Цикл for по индексу списка.	
12. Цикл while. Реализация цикла for с помощью цикла while	
13. Конструкция range.	
14. Абстракция списков или списковое включение (List	
comprehension).	
15. Обработка нескольких списков одновременно.	
16. Вложенные списки.	
17. Извлечение срезов (нарезка списков).	
18. Прохождение по элементам вложенных списков в цикле.	

- 19. Кортежи (Tuples).
- 20. Локальные и глобальные переменные.
- 21. Функции. Функции с несколькими входными аргументами. Функции возвращающие несколько значений. Функции без возвращаемых значений.
- 22. Значение аргумента функции по умолчанию (keyword arguments, аргументы ключевого слова).
- 23. Лямбда-функции (анонимные функции или лямбда-выражения).
- 24. Ветвление. Конструкция if-else. Встроенные (inline) проверки if.
- 25. Чтение ввода с клавиатуры.
- 26. Чтение данных из командной строки.
- 27. Функция eval. Применение eval к строкам. Применение eval к пользовательскому вводу.
- 28. Функция ехес.
- 29. Преобразования строк, содержащих формулы, в функции на Python (StringFunction).
- 30. Основы использования модуля argparse.
- 31. Построчное чтение файла.
- 32. Чтение файла с инструкцией with. Чтение файла с конструкцией while.
- 33. Чтение файла в строку (string).
- 34. Запись данных в файл.
- 35. Обработка исключений. Проверка на определенное исключение.
- 36. Генерирование исключений.

Задание для показателя оценивания дескриптора «Умеет», «Владеет»	Вид задания
1. Задайте переменную primes, которая является списком,	практический
содержащим простые числа 2, 3, 5, 7, 11 и 13. Выведите каждый	
элемент списка в цикле for. Присвойте переменной р число 17 и	
добавьте р в конец списка. Выведите содержимое нового списка.	
2. Написать код, который выводит таблицу значений t и y(t), где	
$y(t) = v_0 t - \frac{gt^2}{2}$, a t - это n+1 равномерно отстоящих значений на	
интервале $[0, 2v_0/g]$.	
3. Дана следующая программа:	
a = [1, 3, 5, 7, 11]	
b = [13, 17]	
c = a + b	
print c	
b[0] = -1	
d = [e+1 for e in a]	
print d	
d.append(b[0] + 1)	
d.append(b[-1] + 1)	
print d[-2:]	
for el in a:	
for e2 in b:	
print e1 + e2	
Объясните каждую инструкцию (строку) в этой программе и её	
вывод.	

4. Предполагается, что следующий код вычисляет сумму $s = \sum_{k=1}^{M} \frac{1}{k}$

$$s = 0$$
; $k = 1$; $M = 100$
while $k < M$:
 $s += 1/k$
print s

Эта программа работает неправильно. Найдите ошибки.

5. Пусть определен следующий вложенный список:

при помощи индексирования извлеките из этого списка: 1) букву 'a'; 2) список ['d', 'e', 'f']; 3) последний элемент h; 4) элемент d. Объясните, почему q[-1][-2] имеет значение g.

- 6. Пусть имеется два списка t (моменты времени) и у (соответствующие координаты). Создайте список ty, содержащий строки из таблицы значений t и у. Пройдите в цикле по списку ty и выведите t и у.
- 7. Пусть имеется два списка t (моменты времени) и у (соответствующие координаты). Сохраните два списка во вложенном списке ty так, чтобы ty[0] и ty[1] соответствовали этим двум спискам. Выведите таблицу со значениями t и y в двух столбцах c помощью цикла по элементам списка ty.
- 8. Программа на Руthon должна вывести таблицу, в первом столбце которой градусы Цельсия -60, -50, -40, ..., 60 и во втором столбце соответствующие значения в градусах Фаренгейта:

Найдите ошибки в этой программе.

9. Дано квадратное уравнение . В чем ошибки следующей программы, вычисляющей корни уравнения?

10. Функция Гаусса $f(x) = \frac{1}{\sqrt{2\pi}s} \exp\left[\frac{-1}{2}\left(\frac{x-m}{s}\right)^2\right]$ одна из самых

широко встречающихся функций в науке и технике. Параметры m и s>0 - это заданные действительные числа. Напишите программу для вычисления этой функции при m=0, s=2 и x=1

- 11. Напишите функцию sum_1k (M) на Python, которая возвращает сумму $s = \sum_{k=1}^{M} 1/k$.
- 12. Для заданного списка а функция max из стандартной библиотеки Python вычисляет самый большой элемент в a: max (a).

Напишите свою собственную реализацию функции max.

- 13. Напишите функцию count_pairs (dna, pair), которая возвращает количество появлений пары символов (pair) в строке, содержащей код ДНК (dna). Например, вызов функции с переменными dna, содержащей 'ACTGCTATCCATT' и pair --- 'AT' должен давать число 2.
- 14. Пусть есть формула $y(t) = v_0 t 0.5gt^2$. Нужно рассчитать у для набора значений t из файла со следующим форматом:

```
v0: 3.00
```

t:

0.15592 0.28075

- 0.36807889 0.35 0.57681501876
- 0.21342619 0.0519085 0.042 0.27 0.50620017 0.528
- 0.2094294 0.1117 0.53012 0.3729850 0.39325246
- 0.21385894 0.3464815 0.57982969 0.10262264
- 0.29584013 0.17383923

Напишите функцию, которая считывает файл и возвращает значение v_0 вместе со списком значений t.

- 15. Используя библиотеку matplotlib, постройте график функции $h(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$ в интервале $x \in [-4,4]$.
- 16. Пусть есть простейшая программа для расчета по формуле $y(t) = v_0 t 0.5 g t^2$:

$$v0 = 3; g = 9.81; t = 0.6$$

 $y = v0*t - 0.5*g*t**2$
print(y)

Измените код, так чтобы программа задавала пользователю вопросы t=? и v0=?, а затем получала t и v0 из пользовательского ввода c клавиатуры. Сгенерируйте исключение типа ValueError, если значение t, введенное пользователем не принадлежит отрезку от 0 и 2v0/g.

- 17. Пусть есть вектор V=(2,3,-1) и функция $f(x)=x^3+xe^x+1$. Примените функцию к каждому элементу вектора, используя векторизованные операции и массивы из библиотеки numpy.
- 18. Используя библиотеку питру, создайте массив w со значениями 0; 0.1; 0.2; ...; 3. Что будет результатом выполнения выражений w[:], w[:-2], w[::5], w [2: -2: 6]?