Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Косенок Сефинативне материалы для промежуточной аттестации по дисциплине

Должность: ректор

Дата подписания: 20.06.2025 06:17:01 Уникальный программный ключ:

Взрывное дело

e3a68f3eaa1e62674b54f4998099d3d6bfdcf836		
Код, направление	03.03.02 Физика	
подготовки		
Направленность (профиль)	Цифровые технологии в геофизике	
Форма обучения	очная	
Кафедра-разработчик	Кафедра экспериментальной физики	
Выпускающая кафедра	Кафедра экспериментальной физики	

Типовые задания для контрольной работы:

Вариант 1

- 1. Сколько молей продуктов сгорания образуется при стехиометрическом горении этана в атмосфере кислорода?
- 2. Определить процентное соотношение компонент ВВ с нулевым кислородным балансом (Кб =0), состоящего из аммиачной селитры (Кб = +20%) и тротила (К₆ = 74%)., 2% индустриального масла, 8%
- 3. Определить температуру продуктов взрыва (Твэр) при взрыве нитроглицерина. Реакция взрывчатого превращения нитроглицерина $C_3H_5(ONO_2)3=3CO_2+2.5H_2O+1.5N_2+0.25O_2$.

Вариант 2

- 1. Определить кислородный баланс K_6 и кислородный коэффициент α_{κ} для тринитротолуола (тротила) $C_7H_5(NO_2)_3$
- 1. Определить К₀ для трехкомпонентного ВВ гранулита АС-8, состоящего из 90% аммиачной селитры.
- 2. Определить скорость детонации гранулита игданита при плотности заряжания $\Delta = 0.85$ г/см3. Теплота взрыва - $\approx 3800 \text{ кДж/кг} (900-920 \text{ ккал/кг})$. D'эт = 3600 + 3500(0.85 - 1) = 3075 м/с.

Вариант 3

- 1. Рассчитать кислородный баланс наиболее распространенной компоненты промышленных ВВ аммиачной селитры NH₄NO₃.
- 2. Рассчитать теплоту взрыва нитроглицерина, реакция взрывчатого превращения которого имеет вид $C_3H_5(ONO_2)_3 = 2.5H_2O + 3CO_2 + 1.5N_2 + 0.25O_2.$
- 3. Определить объем ПВ при взрыве нитроглицерина ($K_6 > 0$, $M_{\tiny BB}$ =227 г-моль): $C_3H_5(ONO_2)3=3CO_2+2,5H_2O+1,5N_2+0,25O_2.$

Вариант 4

- 1. Составить условную (брутто) формулу, определить K_{δ} и α_{κ} для смесевого трехкомпонентного ВВ, состоящего из 80% аммиачной селитры (М=80 г-моль), 15% тротила (М=227 г-моль) и 5% алюминия (М=27 г-моль).
- 2. Составить реакцию взрывчатого превращения алюмотола ($K_6 < 0$), представляющего собой гранулированный сплав тротила - 85% и 15% алюминиевой пудры.
- 3. Определить полную идеальную работоспособность и термодинамический КПД аммонита 6ЖВ при плотности заряжания 900 кг/м3 и следующих параметрах взрывного превращения: $V_{\text{пв}} = 0.86 \text{ м3/кг}$; $Q_{\text{взр}} = 4300 \text{ кДж/кг}; T_{\text{взр}} = 2600 \text{ K}.$ Для расчета показатель адиабаты принимается $\gamma = 1,25$.

Вариант 5

- 1. Определить процентное соотношение компонент BB с нулевым кислородным балансом ($K_6 = 0$), состоящего из аммиачной селитры.
- 2. Рассчитать теплоту взрыва нитроглицерина, реакция взрывчатого превращения которого имеет вид $C_3H_5(ONO_2)_3 = 2,5H_2O + 3CO_2 + 1,5N_2 + 0,25O_2.$

3. Рассчитать основные термодинамические характеристики граммонита 79/21 (для 1 кг ВВ). Состав ВВ: аммиачная селитра NH_4NO_3 - 79% , тротил $C_7H_5(NO_2)_3$ - 21%, плотность заряжания $\alpha=850$ кг/м³.

Типовые вопросы к зачету с оценкой:

	Задание для показателя оценивания дискриптора «Знает»	Вид задания
Τı	повые вопросы к зачету:	теоретический
1.	Общая характеристика явлений горения и взрыва.	
2.	Понятие о взрыве. Химический и физический взрывы.	
3.	Классификация взрывчатого вещества.	
4.	Расчет кислородного баланса взрывчатых веществ.	
5.	Принцип составления реакций взрывчатого превращения	
	взрывчатых веществ.	
6.	Кислородный баланс.	
7.	Расчет теплового эффекта взрыва взрывчатого вещества.	
8.	Закон Гесса.	
9.	Расчет теплоты взрыва взрывчатого вещества.	
	Расчет температуры взрыва.	
11.	Расчет объема газообразных продуктов взрыва.	
12.	Расчет давления газообразных продуктов взрыва.	
13.	Расчет полного термодинамического КПД взрыва.	
14.	Баланс энергии при взрыве взрывчатого вещества.	
15.	Расчет детонационных характеристик взрывчатого вещества.	
	Расчет скорости детонации взрывчатого вещества.	
	Расчет детонационного давления (давление в точке Чепмена-	
	Жуге).	
18.	Адиабата Гюгонио.	
19.	Методы исследования детонации. Бризантное и фугасное	
	действие взрыва.	

3	адание для показателя оценивания дискриптора «Умеет»	Вид задания
Типог	вые варианты задач к зачету:	практический
1.	Определить Кб и α_k для тринитротолуола (тротила) С7H5(NO2)3, молекулярная масса которого $M_{BB} = 227$ г-моль.	
2.	Рассчитать кислородный баланс наиболее распространенной компоненты промышленных BB - аммиачной селитры NH4NO3, молекулярная масса которой $M_{AC}=80$ г-моль.	
3.	Составить условную (брутто) формулу, определить Кб и	
	α_k для смесевого трехкомпонентного ВВ, состоящего из 80% аммиачной селитры (М=80 г-моль), 15% тротила (М=227 г-моль) и 5% алюминия (М=27 г-моль).	
4.	Определить Кб для двухкомпонентного ВВ граммонита $30/70$, состоящего из 30% аммиачной селитры $K6 = +20\%$ и 70% тротила $K6 = -74\%$:	
5.		
6.	Определить процентное соотношение компонент BB с нулевым кислородным балансом (Кб =0), состоящего из	
7.	аммиачной селитры (Кб = $+20\%$) и тротила (Кб = -74%). Определить кислородный баланс аммонита 6ЖВ, состоящего из 0,925 кмоля тротила и 9,88 кмолей	

- аммиачной селитры. Его элементарный состав $C_{6,48}$ $H_{44,13}$ $O_{35,18}$ $N_{22,52}$.
- 8. Определить скорость детонации гранулита игданита при плотности заряжания $\Delta=0.85~{\rm г/cm^3}$. Теплота взрыва $Q_{\rm BB}=3800~{\rm кДж/кг}~(900-920~{\rm ккал/кг})$.
- 9. Определить идеальную скорость детонации гранулита игданита. Объем продуктов взрыва равен для игданита V пв = $0.98 \text{ m}^3/\text{кг}$ или 980 л.
- Определить параметры детонации алюмотола при плотности заряжания 1000 кг/м³ и теплоте взрыва 5279 кДж/кг.
- 11. Определить параметры детонации граммонала A-45 при плотности заряжания 900 кг/м³ и теплоте взрыва 5720 кДж/кг.
- 12. Определить параметры детонации граммонита 30/70 при плотности заряжания 870 кг/м³ и теплоте взрыва 3440 кДж/кг.
- 13. Определить параметры детонации игданита при плотности заряжания 800 кг/м³ и теплоте взрыва 3770 кДж/кг.
- 14. Определить параметры детонации скального аммонита при плотности заряжания 1400 кг/м³ и теплоте взрыва 5415 кДж/кг.
- 15. Определить параметры детонации детонита М при плотности заряжания 1 100 16. Определить параметры детонации аммонита АП-5ЖВ при плотности заряжания 1000 кг/м³ и теплоте взрыва 3800 кДж/кг.